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Persistent Jet Noise Challenge

• Supersonic transport 

unique jet noise problems

• Substantial impact on 

health of service persons

Instrument development goals

• New tools for turbulent 

plume details

• Data for development of 

models for jet noise 

prediction
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Motivation

Noise levels on carrier 

decks can exceed 145 dB



Background
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Henderson (2012): Axisymmetric third 

stream:

• High frequency noise reduction

• Reduced impact with forward flight

Papamoschou et al. (2016): Even more 

creative third streams:

• RANS shows redistribution of TKE

• Dramatic noise downstream reduction

Henderson, Leib and Wernet (2015): 

Asymmetric third stream

• Dramatic reductions downstream

• Redistribution of TKE



High speed jet instrumentation & 

measurements
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High-data rate, non-intrusive measurements in cold 

supersonic jets/ hot subsonic jets:

• LDV, Kerhervé et al. (EIF 2004) 

• 2-point LDV in cold supersonic jet 

• Space-time correlations 

• TR-PIV, Wernet and Bridges (2007)

• Up to 50 kHz in subsonic hot jets

• Spectral development

• Space-time correlations 

• Megaherz rate DGV (Thurow et al.,2005): 

• max. 1 MHz camera sampling rate (presented 

results up to 250 kHz), 1-comp

• Supersonic cold jet

• Convective velocities

TR-DGV

TR-PIV

Thurow, B., JIANG, N., Lempert, W., & Samimy, M. (2005). Development of 

megahertz-rate planar doppler velocimetry for high-speed flows. AIAA Journal



Basics:

• First developed by Komine (Northrop Co) in 1990, 

refined by Meyers and Komine (1991) 

• Mie scattered light is sent trough a molecular gas 

cell (e.g Iodine) and its frequency transduced to 

intensity (24 “optical frequency-to-intensity 

converter”)

• Using a reference or calibration the Doppler 

frequency shift can be determined:

• Considered to be optimal for high speed flow due to 

absolute error

• Conventional systems have (mean) uncertainties in 

the range ±0.5m/s to ±3m/s 
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Iodine cell transmission scan

*Komine, System for measuring velocity field of 

fluid flow utilizing a laser-Doppler spectral 

image converter, US Patent No. 4 919 536, 

1990

*

Doppler Global Velocimetry



Time-resolved Doppler Global 

Velocimetry
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Three-velocity component operation by velocity 

multiplexing:

2 laser beam directions + 2 collection directions = 3 

linearly independent Doppler directions + 1 

redundant measurement
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Previous TR-DGV

Thurow et al. (2005)

• High-Speed camera based

Ecker et al. (2014)

• Single point 3 component TR-DGV 

(PMT based)

• First approach to laser beam 

multiplexing

• Mean velocity, Reynolds shear 

stresses and velocity spectra Ecker et al. (2015a,b,c)

• Multi-channel PMT cameras

• Convective velocities for heated 

supersonic jet

• Intermittency factor distribution

• Frequency dependent convective 

velocities



Key Development: PMT camera

Newly developed PMT camera based on:

• Hamamatsu H8500C/H10660 64 CH PMT array

• Custom 16 CH instrument amplifier boards

• FPGA based DAQ backend allows recording at 50MHz sampling rate. 

Preprocessing on the FPGA reduces actual streaming bandwidth to 

10MS/s per channel



Time-resolved Doppler Global 

Velocimetry
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Lens focal length 200 mm

Magnification 1.257

Sensor area (effective) 24.12 x 48.7 mm2

Measurement area 30.32 x 61.22 mm2

(horizontal) spatial resolution on 

measurement plane
7.58 mm

• 250 kHz flow sampling

• 3-velocity component 

capability

• 32-points simultaneously 

sampled
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Facility

Tests in Nozzle Acoustics Test Rig (NATR) and High Flow Jet Exit Rig 

(HFJER) at the NASA GRC Aero-Acoustics Propulsion Laboratory

• 65 feet high, 130 feet diameter 

AAPL dome

• Anechoic testing 

environment

• Engine component R&D

• NATR:, 53 inch diameter, free-

jet acoustic wind tunnel

• HFJER to mount test nozzle 

hardware within NATR

http://facilities.grc.nasa.gov/aapl/

NATR

HFJER

http://facilities.grc.nasa.gov/aapl/
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Instrument arrangement in facility

Detector units

HFJER

Laser and laser 
monitoring

Laser sheets

Installation:

• Used NASA facility 

traverse

• All optics, electronics on 

traverse

• Acoustic box for acoustic 

and thermal shielding of 

Laser and reference gas 

cell

Notes:

• Operation robust over 

25𝑜𝐶 temperature 

changes (and freezing 

temps)

• More seeding than PIV

• Laser frequency 

stabilization
Configuration instantaneous velocity uncertainty  ±9 𝑚/𝑠
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Three-stream experiments

The axisymmetric-nozzle system used

in the three-stream experiments.

Bypass Nozzle

Tertiary Nozzle

Core Nozzle

Plug

The offset nozzle system used in the

three-stream experiments.

Thin Side

Thick Side

All experiments at 0 free jet Mach number

Flow seeding:

• 0.5 μm diameter alumina powder.

• Seeding colloid prepared using a pH 

stabilization technique (Wernet and 

Wernet 1994)

Area ratio:

At /Ac 1.0

Ab /Ac 2.5

Nozzle pressure ratio:

NPR: core and bypass 1.8

NPR: tertiary 1.4

Nozzle temperature ratio:

NTR: core 3.0

0.156” offset 



Velocity results: Validation
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Comparison PIV data: 

Henderson and Wernet

(2016)

• Laser frequency 

fluctuations

• Mean velocity 

comparison 

reasonable

• Turbulence results 

show some 

differences

• Instrument 

variance

• “Missing” 

samples



Velocity spectra: Axisymmetric 

nozzle on centerline
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Stream-wise development 

of velocity spectra

• Consistent increase at 

all frequencies

• Spectral estimator 

important

• Drop-out

• Spectral variance

• Consistent 

instrumentation noise 

floor

• Spectral uncertainties

still being quantified

f, Hz



Convection velocity: Axisymmetric
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Convection velocity axisymmetric (TR-DGV)

Mean stream-wise velocity axisymmetric (PIV)

Convection velocity from time/space correlation 

across stream-wise-spaced sensors (e.g., Ecker et 

al. AIAA J. 2015, ±𝟔. 𝟓% RMS uncertainties)

Comparison of convection and mean velocity



Convection velocity: 

Axisymmetric vs Offset
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Axisymmetric

Offset 

Thick side

Convection velocity offset configuration (TR-DGV)

Mean stream-wise velocity axisymmetric (PIV)

Convection velocity offset configuration (TR-DGV)

Mean stream-wise velocity axisymmetric (PIV)

Convection velocity offset configuration (TR-DGV)

Mean stream-wise velocity axisymmetric (PIV)

Offset clearly thickened for x/DeqA<3

Diminishes as flow develops
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Axisymmetric 

configuration

Offset 

configuration

Profiles  all 

similar to 

downstream 

axisymmetric

Virtually no change in profiles 

for outer portions of shear layer

Development of profiles 

throughout this region



Regarding TR-DGV
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Laser 
intensity

Flow 
intensities

• Discussed more instrumentation 

aspects in AIAA-2016-0029

• Laser frequency fluctuations

• On-going work for signal 

processing

• Current results first for scaled-up 

arrangement

• 250 kHz velocimetry

• Shows strength of method for 

time-resolved data

• Work confirms complementary 

role for TR-DGV in conjunction 

with PIV



• Measurements using time-resolved velocimetry in 3-stream 

jet

• Good agreement of mean velocity data with PIV comparison 

data

• Turbulent intensity problematic due to noise influence, signal 

estimation

• Used time-resolved data to begin analysis of statistical 

turbulence characteristics

• Next steps

• Continue refinement of velocity estimation

• Use spectral and correlation data to update source models for 

three-stream jet predictions

• Analyze physics using both PIV and TR-DGV insights

• Process more data: two more configurations, one additional 

condition 20

Conclusions and next steps
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Questions ?



Review 3-stream work

NASA results previously reported

Turbulence information in 3-stream jet noise predictions
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Convection velocity: Offset
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Convection velocity offset configuration (TR-DGV)

Mean stream-wise velocity axisymmetric (PIV)

Offset configuration convection velocity compared 

to mean velocity of axisymmetric case (reference)



TR-DGV geometry
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• 45 deg. arrangement

• Uncertainty (inst) 9.2 /6.5 / 

6.2 m/s

• Uncertainty (mean) 1.5 /1.5 

/1.5 m/s


